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Abstract

The B-quadrilateral lattice (BQL) provides geometric interpretation of Miwa’s discrete BKP equation within the quadrialteral
lattice (QL) theory. After discussing the projective-geometric properties of the lattice we give the algebro-geometric construction
of the BQL emphasizing the role of Prym varieties and the corresponding theta functions. We also present the reduction of the
vectorial fundamental transformation of the QL to the BQL case.
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1. Introduction

Latterly, the many results describing the well-known connection between integrable partial differential equations
and the differential geometry of submanifolds have been transfered to the discrete (difference) level, see for
example [4,19,43]. The interest in such research is stimulated from various fields, like computer visualization,
combinatorics, lattice models in statistical mechanics and quantum field theory, and recent developments in quantum
gravity.

A successful general approach towards description of the relation between integrability and geometry is provided
by the theory of multidimensional quadrilateral lattices (QLs) [17]. These are just maps x : ZN

→ PM (3 ≤ N ≤ M)
with planar elementary quadrilaterals. The integrable partial difference equation counterpart of the QLs are the discrete
Darboux equations (see Section 2.4 for details), being found first [6] as the most general difference system integrable
by the ∂̄ method. It should be metioned that the (differential) Darboux equations [11] play an important role [7] in the
multicomponent Kadomtsev–Petviashvilii (KP) hierarchy, which is commonly considered [12,27] as the fundamental
system of equations in integrability theory.
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Fig. 1. The geometric integrability scheme.

It turns out that integrability of the discrete Darboux system is encoded in a very simple geometric statement (see
Fig. 1).

Lemma 1 (The Geometric Integrability Scheme). Consider points x0, x1, x2 and x3 in general position in PM , M ≥ 3.
On the plane 〈x0, xi , x j 〉, 1 ≤ i < j ≤ 3 choose a point xi j not on the lines 〈x0, xi 〉, 〈x0, x j 〉 and 〈xi , x j 〉. Then
there exists the unique point x123 which belongs simultaneously to the three planes 〈x3, x13, x23〉, 〈x2, x12, x23〉 and
〈x1, x12, x13〉.

Integrable reductions of the quadrilateral lattice (and thus of the discrete Darboux equations) arise from additional
constraints which are compatible with a geometric integrability scheme (see, for example [15,18]). One of the most
important reductions of the KP hierarchy of nonlinear equations is the so called BKP hierarchy [13] (here ‘B’ appears
in the context of the classification theory of simple Lie algebras). In [34] it was shown that the τ -function of the BKP
hierarchy satisfies certain bilinear discrete equation (the transformation between the infinite sequence of times of the
hierarchy and the corresponding discrete variables is called the Miwa transformation):

τ τ(123) = τ(12)τ(3) − τ(13)τ(2) + τ(23)τ(1), (1.1)

which is known as the discrete BKP or the Miwa equation. Here and in all the paper, given a fuction F on ZN , we
denote its shift in the i th direction in a standard manner: F(i)(n1, . . . , ni , . . . , nN ) = F(n1, . . . , ni + 1, . . . , nN ).

The linear problem and the Darboux-type (Moutard) transformations for the discrete BKP equation (1.1) were
constructed in [38]. In literature there are known several geometric interpretations of the discrete BKP equation in
terms of the reciprocal figures and inversive geometry [29,43], or in terms of the trapezoidal nets [4]. It should be also
mentioned that the discrete BKP equation has been recently investigated, under the name of the cube recurrence, in
combinatorics [40,25,8].

In this paper we propose (see Section 2) another geometric interpretation of the discrete BKP equation, which we
consider from the point of view of the quadrilateral lattice theory. This new reduction of the quadrilateral lattice, which
we call the B-quadrilateral lattice (BQL), is projectively invariant and is based on additional local linear constraint.
Section 2 is of a rather elementary geometric nature, but the results obtained there have far-reaching consequences.
In fact, the paper gives new arguments supporting the conjecture that basic integrability features are consequences of
incidence geometry statements (see also introductory remarks in [19]).

More involved techniques are used in Section 3, where we elaborate the algebro-geometric method to produce
large classes of the B-quadrilateral lattices and the corresponding solutions of the discrete BKP system of equations.
In doing that we start from the recent results of [22], where restrictions on the algebro-geometric data of the discrete
Darboux system [1] compatible with the discussed reduction were given. Then we proceed to formulas for the
wave and τ -functions of the BQL in terms of the Prym theta functions related with the algebraic curves used
in the construction. We transfer this way the algebro-geometric method of construction of solutions of the BKP
hierarchy [14] and of its two-component generalization [47] to the discrete level.

We also present, in Section 4, the corresponding reduction of the vectorial fundamental transformation of the
quadrilateral lattice [21] and establish its link with the Pfaffian form of the vectorial Moutard transformation found
in [38]. In Appendices we give alternative proof of a crucial auxilliary result of the paper, and we summarize basic
properties of Pfaffians.
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Fig. 2. Elementary hexahedron of the B-quadrilateral lattice. Positions of vertices of the hexahedron have been changed with respect to those of
Fig. 1 in order to visualize the additional planes (the corresponding two new planar quadrilaterals are depicted using dashed lines).

2. The B-quadrilateral lattice

We start with discussing the geometric constraint, which imposed on the quadrilateral lattice allows us to define its
new integrable reduction. Then we proceed to the algebraic description of such a reduced lattice showing its connection
with the discrete BKP equation. Finally, we discuss the relation between the τ -function of the B-quadrilateral lattice,
and the τ -function of the quadrilateral lattice.

2.1. Geometric definition of the BQL

Proposition 2. Under hypotheses of Lemma 1, assume that the points x0, x12, x13, x23 are coplanar, then the points
x1, x2, x3, and x123 are coplanar as well (see Fig. 2).

It can be shown by the standard linear algebra (for a synthetic-geometry proof see a remark below). We perform,
however, the calculations, because the way we are going to do it will be important in the next sections in showing
connection of the BQL with the discrete BKP equation.

Lemma 3. Under hypotheses of Proposition 2, for fixed initially homogeneous coordinates x0 and x1 (gauges) of x0
and x1, there exist a gauge such that the following linear relations hold:

xi j − x0 = f i j (xi − x j ), 1 ≤ i < j ≤ 3, (2.1)

where the coefficients f i j depend on the actual positions of the points xi j .

Proof. The coplanarity of the four points x0, x1, x2 and x12 can be algebraically expressed as the linear relation:

αx0 + βx1 + γ x2 + δx12 = 0,

where, by the genericity assumption (no three of the points are collinear), all the coefficients do not vanish. By playing
with rescaling the homogeneous coordinates of x2 and x12 we can transfer above equation to the form: (2.1)

x12 − x0 = f 12(x1 − x2). (2.2)

Similarly, we can rescale the homogeneous coordinates of x3 and x13 to express planarity of the corresponding
elementary quadrilateral as:

x13 − x0 = f 13(x1 − x3). (2.3)

However, with fixed gauges x0, x2 and x3 the coplanarity of x0, x2, x3 and x23 can be expressed, by playing with the
gauge of x23, at most as:

x23 − x0 = ax2 − bx3. (2.4)

Then:

x0 ∧ x12 ∧ x13 ∧ x23 = f 12 f 13(a − b)x0 ∧ x1 ∧ x2 ∧ x3, (2.5)

and at this moment we use coplanarity of x0, x2, x13, x23, which is equivalent to a = b. �
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Fig. 3. Two quadrangles.

Remark 1. Notice that the whole reasoning can be applied even if the gauges of x0 and of x1 are not fixed initially
(we could then achieve f 12

= 1). However, we will need this additional restriction in next sections.

Proof of Proposition 2. By the linear algebra, the homogeneous coordinates of the point x123 ∈ 〈x3, x13, x23〉 ∩

〈x2, x12, x23〉 ∩ 〈x1, x12, x13〉, in the gauge of Lemma 3 read:

1
ρ

x123 =

(
f 13

− f 12
+

f 12 f 13

f 23

)
x1 −

(
f 23

+ f 12
−

f 12 f 23

f 13

)
x2 +

(
f 13

− f 23
+

f 13 f 23

f 12

)
x3,

(we still keep the undetermined yet factor ρ) which gives coplanarity of x123, x1, x2 and x3. �

Corollary 4. By fixing the gauge function ρ at:

ρ = 2 f 13
− 2 f 12

− f 23
+

f 13 f 23

f 12 +
f 12 f 13

f 23 +
f 12 f 23

f 13 ,

we find that the linear relations on the new facets (containing x123) of the cube are of the form (2.1) again, for example:

x123 − x1 = f 23
1 (x12 − x13),

where

f 23
1 =

f 23

f 12 f 13 − f 12 f 23 + f 13 f 23 .

Remark 2. For a geometrically oriented reader we would like to comment on another interpretation of Proposition 2,
visualized on Fig. 3. It is related to the notion (see, for example [10]) of the quadrangular set of points which are
the intersection points of the lines of a complete quadrilateral (add the diagonals). Such a configuration is usually
denoted by Q(ABC,DEF), where the first three points A, B,C lie on sides through one vertex while the remaining
three D, E, F lie on the respectively opposite sides, which form a triangle. It is known that Q(ABC,DEF) implies
Q(DEF, ABC).

In notation of Proposition 2, denote by ` the intersection line of the plane 〈x1, x2, x3〉 with the plane 〈x12, x23, x13〉

(containing also the point x0). Denote by A, B, C , D, E , F intersections of sides of the complete quadrilateral with
vertices x0, x12, x23, x13 with `, i.e. Q(DEF, ABC). The statement of the lemma is equivalent to the fact that the lines
〈A, x1〉, 〈B, x2〉, 〈C, x3〉 intersect in one point (which is x123); see Excercise 1 of Section 2.4 of [10].

Remark 3. As it was pointed to me by Yuri Suris, Proposition 2 is equivalent to the Möbius theorem [35] on mutually
inscribed tetrahedra: if the four vertices of one tetrahedron lie respectively in the four face planes of another, while
three vertices of the second lie in three face planes of the first, then the remaining vertex of the second lies in the
remaining face plane of the first. Indeed, take points x0, x1, x2, x3 as vertices of the first tetrahedron, points x12, x13,
x23 as three vertices of the second tetrahedron, and the point x123 as the remaining vertex of the second one (compare
Figs. 2 and 4). In fact, Fig. 3 appears in Möbius’ original proof of the theorem.
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Fig. 4. Two mutually inscribed tetrahedra. Positions of vertices of the tetrahedra are the same as positions of the vertices of the B-reduced
hexahedron depicted on Fig. 2. Dashed lines visualize facial planes of the tetrahedrons.

Remark 4. Proposition 2 can also be considered as a special version of the Miquel theorem [39] (used in [9] to show
integrability of the circular lattice) in the same way like Pappus’ hexagon theorem is a special case of the Pascal
theorem.

We conclude this section by defining new reduction of the quadrilateral lattice.

Definition 1. A quadrilateral lattice x : ZN
→ PM is called the B-quadrilateral lattice if for any triple of different

indices i, j, k the points x , x(i j), x( jk) and x(ik) are coplanar.

Corollary 5. In the B-quadrilateral lattice, for any triple of different indices i, j, k the points x(i), x( j), x(k) and x(i jk)
are coplanar.

2.2. Multidimensional consistency of the BQL constraint

As was shown in [17] the planarity condition, which allows us to construct the point x123 as in Lemma 1, does
not lead to any further restrictions if we increase dimension of the lattice. This is the consequence of the following
geometric observation.

Lemma 6. Consider points x0, x1, x2, x3 and x4 in general position in PM , M ≥ 4. Choose generic points
xi j ∈ 〈x0, xi , x j 〉, 1 ≤ i < j ≤ 4, on the corresponding planes, and using the planarity condition construct the
points xi jk ∈ 〈x0, xi , x j , xk〉, 1 ≤ i < j < k ≤ 4—the remaining vertices of the four (combinatorial) cubes. Then the
intersection point x1234 of the three planes:

〈x12, x123, x124〉, 〈x13, x123, x134〉, 〈x14, x124, x134〉 in 〈x1, x12, x13, x14〉,

coincides with the intersection point of the three planes:

〈x12, x123, x124〉, 〈x23, x123, x234〉, 〈x24, x124, x234〉, in 〈x2, x12, x23, x24〉,

which is the same as the intersection point of the three planes:

〈x13, x123, x134〉, 〈x23, x123, x234〉, 〈x34, x134, x234〉, in 〈x3, x13, x23, x34〉,

and the intersection point of the three planes:

〈x14, x124, x134〉, 〈x24, x124, x234〉, 〈x34, x134, x234〉, in 〈x4, x14, x24, x34〉.

Remark 5. In fact, the point x1234 is the unique intersection point of the four three dimensional subspaces
〈x1, x12, x13, x14〉, 〈x2, x12, x23, x24〉, 〈x3, x13, x23, x34〉, and 〈x4, x14, x24, x34〉 of the four dimensional subspace
〈x0, x1, x2, x3, x4〉. This observation generalizes naturally to the case of a more dimensional hypercube with the planar
facets.
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The goal of this section is to show an analogous result for the B-quadrilateral lattice. Notice, that in previously
known reductions of the quadrilateral lattice, such as the symmetrical [18] or the quadratic [15] reduction, the
additional constraint was imposed on initial quadrilaterals. Then the multidimensional consistency of the reduction
was the result of the three-dimensional consistency of the constraint and the multidimensional consistency of the
quadrilateral lattice.

In the BQL case, the constraint is imposed on the level of elementary cubes. Therefore its four-dimensional
consistency is crucial for integrability of the B-quadrilateral lattice, and once proven, implies consistency of the
reduction in more dimensions.

Proposition 7. Under hypotheses of Lemma 6, assume that the BQL condition holds for the initial data, i.e., the
point x0 belongs to the four planes 〈xi j , xik, x jk〉, 1 ≤ i < j < k ≤ 4. Then all the three-dimensional (combinatorial)
cubes obtained in the construction satisfy the BQL constaint, i.e.:

x1 ∈ 〈x123, x124, x134〉, x2 ∈ 〈x123, x124, x234〉, x3 ∈ 〈x123, x134, x234〉, x4 ∈ 〈x124, x134, x234〉.

Proof. Consider the gauge of Lemma 3. If we add into the construction points x4 and x14, then by fixing suitably
their gauges x4 and x14, we can rewrite the coplanarity condition of x0, x1, x4 and x14 in the form (2.1). The same
argument, as in the proof of Lemma 3 implies that the algebraic coplanarity conditions of x0, xi , x4 and xi4, i = 2, 3
take the form of Eq. (2.1).

By fixing gauges of points xi jk as in Corollary 4, we obtain the relations:

xi jk − xi = f jk
i (xi j − xik), i, j, k distinct, (2.6)

where

f jk
i =

f jk

f i j f ik − f i j f jk + f ik f jk , (2.7)

with f j i
= − f i j .

In Eq. (2.6) let us fix i = 1 and consider the three pairs ( j, k): (2, 3), (2, 4) and (3, 4). Then after simple calculation
we obtain the following linear relation:

f 24
1 f 34

1 (x123 − x1)− f 23
1 f 34

1 (x124 − x1)+ f 23
1 f 24

1 (x134 − x1) = 0, (2.8)

which shows that x1 ∈ 〈x123, x124, x134〉. Other cases are similar. �

Corollary 8. Under assumptions of Proposition 7, the point x1234 belongs to the four planes: 〈x12, x13, x14〉,
〈x12, x23, x24〉, 〈x13, x23, x34〉 and 〈x14, x24, x34〉.

Remark 6. The same procedure can be applied when we increase a dimension of the hypercube keeping the BQL
constraint.

2.3. BQL and the discrete BKP equation

Proposition 9. A quadrilateral lattice x : ZN
→ PM is a B-quadrilateral lattice if and only if it allows for a

homogoneous representation x : ZN
→ RM+1

∗ satisfying the system of discrete Moutard equations (the discrete
BKP linear problem)

x(i j) − x = f i j (x(i) − x( j)), 1 ≤ i < j ≤ N , (2.9)

for suitable functions f i j
: ZN

→ R.

Proof. As we have shown above (we present an alternative difference-equation theory proof in Appendix A), the
B-quadrilateral lattices indeed allow for such a gauge; here the remark after Lemma 3 turns out to be important.
Conversely, three equations (2.9) for the pairs (i, j), (i, k), ( j, k) imply the linear relation:

f jk f ik(x(i j) − x)+ f i j f ik(x( jk) − x)− f i j f jk(x(ik) − x) = 0, 1 ≤ i < j < k ≤ N , (2.10)

expressing coplanarity of the four points x , x(i j), x( jk) and x(ik). �
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The system (2.9) is well-known in the literature [38]. Its compatibility leads to the following set of nonlinear
equations:

1 + f jk
(i) ( f i j

− f ik) = f ik
( j) f i j

= f i j
(k) f ik, i, j, k distinct, (2.11)

with f j i
= − f i j .

Remark 7. The system (2.10) can actually be solved, see, for example [4], (we have used this fact in a hidden form
already). Simply replace the lower index i in the ‘star–triangle’ relation (2.7) by the shift (i).

On the other side, the second equality in the compatibility condition implies existence of the potential τ : ZN
→ R,

in terms of which the functions f i j can be written as:

f i j
=
τ(i)τ( j)

τ τ(i j)
, i 6= j. (2.12)

The first equality can then be rewritten in the form of the system of the discrete BKP equations [34]

τ τ(i jk) = τ(i j)τ(k) − τ(ik)τ( j) + τ( jk)τ(i), 1 ≤ i < j < k ≤ N . (2.13)

Remark 8. Two dimensional quadrilateral lattices whose homogeneous coordinates satisfy (up to a gauge) Eq. (2.9)
are characterized geometrically [22] by condition that any point x and its four second-order neighbours x(±1±2) are
contained in a subspace of dimension three. Obviously, any two-dimensional slide of the B-quadrilateral lattice fulfills
this property, which can therefore serve as a definition of a two-dimensional BQL. However, the example of the
standard injection ZN

→ RN
⊂ PN shows that without additional requirements this property does not characterize

completely multidimensional BQL.

2.4. The τ -functions

In this section we present the relationship between the τ -function of the quadrilateral lattice [18], which we denote
here by τ̃ , and the above τ -function of the B-quadrilateral lattice. From the relationship between the KP and BKP
hierarchies [12] we expect that within the class of the B-quadrilateral lattices τ̃ should be equal to the square of τ .

Let us recall briefly the algebraic construction of the τ -function of the quadrilateral lattice (the geometric meaning
is presented in [18]). The nonhomogeneous coordinates x : ZN

→ RM (we restrict our attention to the affine
geometric aspects of the theory) of the quadrilateral lattice satisfy the system of Laplace equations

x(i j) − x = ai j (x(i) − x)+ a j i (x( j) − x), i 6= j. (2.14)

The functions ai j
: ZN

→ R are not arbitrary (the system (2.14) must be compatible), in particular they can be
parametrized in terms of the potentials hi (the Lamé coefficients) as follows:

ai j
=

hi( j)

hi
, i 6= j. (2.15)

Define the so called rotation coefficients βi j from equations:

∆i h j = hi( j)βi j , i 6= j, (2.16)

and the normalized tangent vectors Xi from:

∆i x = hi Xi . (2.17)

Then the Laplace system (2.14) takes the first order from:

∆ j Xi = βi j X j , i 6= j, (2.18)
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and its compatibility reads:

∆ jβik = βi j (k)β jk, i, j, k distinct. (2.19)

The discrete Darboux equations (2.19) imply existence of the potential τ̃ (the τ -function of the quadrilateral lattice):

τ̃ τ̃(i j)

τ̃(i)τ̃( j)
= 1 − βi jβ j i , i 6= j. (2.20)

In looking for the Lamé coefficients hi in the reduction from QL to BQL we can compare both linear systems:
(2.9) and (2.14), and the expresions (2.15) and (2.12) to obtain:

hi = (−1)
∑
k<i

mk τ

τ(i)
. (2.21)

The corresponding rotation coefficients are then given by (below we assume i < j):

βi j = −(−1)

∑
i≤k< j

mk
(
τ(i)

τ
+
τ(i j)

τ( j)

)
τ

τ( j)
, (2.22)

β j i = −(−1)

∑
i≤k< j

mk
(
τ( j)

τ
−
τ(i j)

τ(i)

)
τ

τ(i)
, (2.23)

which implies (compare with formula (2.20)):

1 − βi jβ j i =

(
ττ(i j)

τ(i)τ( j)

)2

, i 6= j. (2.24)

Therefore, we can summarize the above considerations as follows:

Proposition 10. Given B-quadrilateral lattice x with the τ -function τ . Then, formally on the level of the reduction
of the system of discrete affine Laplace equations (2.14) to the system of discrete Moutard equations (2.9), the Lamé
functions and the rotation coefficients are given in terms of τ by Eqs. (2.21)–(2.23), and the corresponding τ -function
τ̃ of the quadrilateral lattice is given as:

τ̃ = τ 2. (2.25)

Remark 9. We should be aware that the τ -function of the quadrilateral lattice is defined with respect to the coefficients
of the affine Laplace equation. Eq. (2.9), although formally written in the affine form, is a consequence of the
projectively-invariant definition of the B-quadrilateral lattice. Therefore, in this formal correspondence the geometric
meaning of the rotation coefficients in the BQL reduction has been lost. We mention that the affine geometric meaning
of Eq. (2.9), and therefore also of the rotation coefficients (2.22) and (2.23), can be provided within the context of the
trapezoidal lattices [4] (see also [42,28]).

3. Algebro-geometric construction of the BQL

Below we apply the algebro-geometric approach, well-known in the theory if integrable systems [5], to the B-
quadrilateral lattice reduction. It is known [22] that in the BQL reduction case, the generic algebraic curve, used to
generate solutions of the discrete Darboux equations [1], should be replaced by a curve admitting a holomorphic
involution with two fixed points. Such curves have already been used in construction of solutions of the BKP
hierarchy [14] and of its two-component generalization [47]. We develop the corresponding results of [22] and we
present the explicit formulas for the lattice points and the solutions of the discrete BKP equation in terms of the Prym
theta functions related to such special curves.
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3.1. Curves with involution and their Prym varieties

Let us first summarize some fact from theory of Riemann surfaces (see [24,23]). Consider Γ̂
π
→ Γ a ramified

double covering of genus ĝ = 2g of a compact Riemann surface Γ of genus g with exactly two branch points Q0,
Q∞. Denote by σ : Γ̂ → Γ̂ the holomorphic involution permuting sheets of the covering, i.e., Γ = Γ̂/σ .

The map π∗
: J (Γ ) → J (Γ̂ ) lifting divisor classes of degree 0 is an injection. The holomorphic involution σ

extends to J (Γ̂ ) and allows us to define the Prym variety:

Pσ (Γ̂ ) = {A − σ(A)|A ∈ J (Γ̂ )}. (3.1)

The natural epimorphism i : J (Γ )× Pσ (Γ̂ ) → J (Γ̂ ) has a finite kernel consisting of 4g half-periods in J (Γ ).
There exists a basis of cycles ai , bi , 1 ≤ i ≤ 2g on Γ̂ with the canonical intersection matrix such that

π(ak), π(bk), 1 ≤ k ≤ g, is a canonical basis of cycles on Γ and:

σ(ak) = −ag+k, σ (bk) = −bg+k, 1 ≤ k ≤ g.

The corresponding normalized holomorphic differentials ωi :∮
a j

ωi = δi j , 1 ≤ i, j ≤ 2g, (3.2)

satisfy:

σ ∗(ωk) = −ωg+k, σ ∗(ωg+k) = −ωk, 1 ≤ k ≤ g. (3.3)

The differentials:

uk = ωk − ωg+k, σ ∗(uk) = uk, 1 ≤ k ≤ g,

form a basis of normalized holomorphic differentials on Γ , while the odd differentials:

wk = ωk + ωg+k, σ ∗(wk) = −wk, 1 ≤ k ≤ g, (3.4)

are called normalized holomorphic Prym differentials. Then the Riemann matrix:

B̂ jk =

∮
b j

ωk, 1 ≤ j, k ≤ ĝ (3.5)

for: Γ̂ has the form

B̂ =
1
2

(
Π + B Π − B
Π − B Π + B

)
, (3.6)

where:

B jk =

∮
b j

uk, 1 ≤ j, k ≤ g (3.7)

is the corresponding Riemann matrix for Γ , and Π is the matrix of the b-periods of the Prym differentials

Π jk =

∮
b j

wk, 1 ≤ j, k ≤ g. (3.8)

The matrix Π is symmetrical and has a positively defined imaginary part, and defines the Prym theta function θ(z;Π ),
z ∈ Cg ,

θ(z;Π ) =

∑
n∈Zg

exp{π i〈n,Π n〉 + 2π i〈n, z〉}, (3.9)

where 〈·, ·〉 denotes the standard bilinear form in Cg .
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With the above choice of the period matrix B for Γ̂ and with Q∞ as the base-point of the Abel map:

A(P) =

∫ P

Q∞

ω, ω = (ω1, . . . , ω2g), (3.10)

the lift of σ from J (Γ̂ ) = C2g/(I2g, B̂) to C2g reads:

σ(z1, . . . , z2g) = −(zg+1, . . . , z2g, z1, . . . , zg),

while the map π∗
: J (Γ ) → J (Γ̂ ) is represented by:

π∗(z1, . . . , zg) = (z1, . . . , zg,−z1, . . . ,−zg).

The Prym variety is a principally polarized abelian variety isomorphic to P = Cg/(Ig,Π ), and the injection
φ : Cg/(Ig,Π ) → C2g/(I2g, B̂) is given by:

φ(z1, . . . , zg) = (z1, . . . , zg, z1, . . . , zg).

There holds the following analogue of the Riemann theorem.

Lemma 11 ([23]). Given e ∈ Cg such that θ(e;Π ) 6= 0, then the zero divisor Z of θ(
∫ P

Q∞
w − e;Π ) on Γ̂ is of

degree 2g and satisfies the relation

φ(e) = A(Z)− A(Q0)+ π∗KΓ , mod (I2g, B̂), (3.11)

where KΓ is the Riemann constants vector of Γ . Moreover Z + σ(Z)− Q0 − Q∞ is a canonical divisor on Γ̂ .

By ωST , (S, T ∈ Γ̂ , S 6= T ) denote the unique meromorphic differential holomorphic in Γ̂ \ {S, T } with poles of
the first order in S, T with residues, correspondingly, 1 and −1, and normalized by conditions:∮

a j

ωST = 0, 1 ≤ j ≤ 2g. (3.12)

It is known that the b-periods of such differentials are given by:∮
b j

ωST = 2π i
∫ S

T
ω j , 1 ≤ j ≤ 2g, (3.13)

with the integral being taken along a curve joining S to T in Γ̂ \
⋃2g

j=1 a j \
⋃2g

j=1 b j . Moreover, the following
relationship between two such differentials holds (with the paths of integration being appropriately choosen [24]):∫ Q

P
ωST =

∫ T

S
ωP Q . (3.14)

Remark 10. Such a form can be expressed in terms of the theta function on: Γ̂ as

ωST = dP log
θ(A(P)− A(S)− ξ ; B̂)

θ(A(P)− A(T )− ξ ; B̂)
,

where ξ is a general point of the divisor Θ of zeros of the theta function in J (Γ̂ ).

3.2. Explicit algebro-geometric formulas

Given N points Qi ∈ Γ , different from Q0, Q∞, and an effective non-special divisor D of degree ĝ such that:

D + σ(D)− Q0 − Q∞

J2ĝ−2(Γ̂ )
= CΓ̂ (3.15)
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is a canonical divisor. For an arbitrary m ∈ ZN there exists [22] the unique function ψ(m) meromorphic on Γ having
in points Qi (in points σ(Qi )) poles (corrspondingly, zeros) of the order mi , no other singularities except for possible
simple poles in points of the divisor D, and normalized to 1 at Q∞. In [22] it was shown that, as a function of the
discrete parameter m, the wave function ψ satisfies the system of the discrete Moutard equations:

ψ(i j)(P)− ψ(P) = f i j (ψ(i)(P)− ψ( j)(P)), 1 ≤ i < j ≤ N , (3.16)

where

f i j
= lim

P→Qi

ψ(i j)(P)
ψ(i)(P)

= − lim
P→Q j

ψ(i j)(P)
ψ( j)(P)

, i < j. (3.17)

To obtain B-quadrilateral lattices we pick up M + 1 points P1, . . . , PM+1 ∈ Γ of the Riemann surface. Then
x j (m) = Ψ(m|Pj ), 1 ≤ j ≤ M + 1 serve as homogeneous coordinates of the lattice. However in this way we
obtain B-quadrilateral lattices in complex projective space. In order to get real lattices certain additional restrictions,
which were also given in [22], should be imposed on the algebro-geometric data.

In [22] the multidimensional aspects of the system (3.16) were not of particular importance. Also the role of the
Prym variety and of the corresponding theta function was not fully exploited. Our goal here is to fill this point. We
start from the immediate consequence of definition (3.1) of the Prym variety.

Corollary 12. Denote by D(m) the divisor of additional zeros of ψ(m), then

D(m)− D
J (Γ̂ )
=

N∑
k=1

mk (σ (Qk)− Qk) (3.18)

moves linearly within the Prym variety.

An important part of the algebro-geometric theory of integrable systems consists on providing the explicit formulas,
in terms of the Riemann theta functions of the corresponding Jacobi varieties, for the wave functions and the soliton
fields. In the case of the special Riemann surfaces used in the paper, there exist [23] formulas connecting the theta
functions of Γ̂ , Γ and Pσ . However, instead of reducing the explicit expressions given in [1,22] for the generic curves,
we will follow the reasoning of [14]. In order to present the explicit formulas, in terms of the (Riemann–) Prym theta
function, for the wave function and other relevant data we will use Lemma 11.

Let us define:

Vk =

∫ Qk

Q∞

w ∈ Cg, 1 ≤ k ≤ N , w = (w1, . . . , wg),

then Eqs. (3.4) and (3.13) imply that:

φ(Vk) =

∫ Qk

σ(Qk )

ω = −
1

2π i

∮
b
ωσ(Qk )Qk , b = (b1, . . . , b2g). (3.19)

Proposition 13. The BQL wave function ψ(m) can be written down with the help of the Prym theta functions as
follows:

ψ(m|P) =

θ(
∫ P

Q∞
w −

N∑
k=1

mkVk − e;Π ) θ(e;Π )

θ(
N∑

k=1
mkVk + e;Π ) θ(

∫ P
Q∞

w − e;Π )
exp

(
N∑

k=1

mk

∫ P

Q∞

ωσ(Qk )Qk

)
, (3.20)

where

φ(e) = A(D)− A(Q0)+ π∗(KΓ ). (3.21)
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Proof. Using the property (3.15) of the divisor D, the Hurwitz formula:

CΓ̂

J2ĝ−2(Γ )
= π∗CΓ + Q0 + Q∞ (3.22)

relating canonical divisors on Γ̂ and Γ , and the relation

A(CΓ̂ ) = −2KΓ̂ (3.23)

between the canonical divisor and the Riemann constants vector, we obtain:

σ(A(D)− A(Q0)+ π∗(KΓ )) = −A(D)+ A(Q0)− π∗(KΓ ),

which asserts that the definition of the vector e in (3.21) is meaningful.
To show that the right-hand side of Eq. (3.20) is single valued on Γ̂ we check that it is independent on the integration

path in the integrals
∫ P

Q∞
. When two paths differ by an elementary cycle we use the properties (3.2)–(3.8) of the

holomorphic differentials, the quasi-periodicity properties of the theta functions:

θ(z + ek;Π ) = θ(z;Π ), θ(z + Π ek;Π ) = exp(−π iΠkk − 2π izk)θ(z;Π ),

where ek are vectors of the standard basis in Cg , and the relations (3.12) and (3.19). From now on our path of
integration avoids the cuts, as in formulas (3.13) and (3.14).

As the normalizaton condition at Q∞ is obvious (the theta function is even) we are left with the analyticity
properties. Lemma 11 implies that the right-hand side has simple poles at points of the divisor D. Apart from the
zeros of the theta function in the nominator (which may eventually cancel with the poles at D), the only other poles
and zeros are consequences of the analytical properties of the integral in the exponential part. Let us choose a local
parameter zk(P) at Qk , then:

ωσ(Qk )Qk (P)
P→Qk

=

(
−

1
zk(P)

+ · · ·

)
dzk(P),

which implies that:∫ P

Q∞

ωσ(Qk )Qk
P→Qk

= − log zk(P)+ O(1),

and, in consequence, the right hand side in Eq. (3.20) has pole of order mk at Qk . Similarly, since zk(σ (P)) is a local
parameter at σ(Qk), we have:∫ P

Q∞

ωσ(Qk )Qk
P→σ(Qk )

= log zk(σ (P))+ O(1),

and the right-hand side in Eq. (3.20) has zero of order mk at σ(Qk). �

Corollary 14. The potentials read:

f i j (m) =

θ

(
Vi +

N∑
k=1

mkVk + e;Π
)
θ

(
V j +

N∑
k=1

mkVk + e;Π
)

θ

( N∑
k=1

mkVk + e;Π
)
θ

(
Vi + V j +

N∑
k=1

mkVk + e;Π
)λ−1

i j , i < j (3.24)

where

λi j = exp
(∫ Qi

Q∞

ωσ(Q j )Q j

)
, i < j. (3.25)

The BQL (the discrete BKP) τ -function within the above class of solutions reads:

τ(m) = θ

(
N∑

k=1

mkVk + e;Π

)∏
i< j

λ
mi m j
i j . (3.26)
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Proof. Expression (3.24) for the potentials is a direct consequence of their algebro-geometric definition (3.17) and of
Eq. (3.20). Then the formula (3.26) for τ -function follows easily from its definiton (2.12). �

Remark 11. From general considerations of [22] we know that:

λi j = exp
(∫ Qi

Q∞

ωσ(Q j )Q j

)
= − exp

(∫ Q j

Q∞

ωσ(Qi )Qi

)
, i < j, (3.27)

which reflects the second equality in (3.17).

4. Transformations of the B-quadrilateral lattice

Below we present the reduction of the vectorial fundamental transformation compatible with the B-quadrilateral
lattice constraint. In literature [38] there is known the direct vectorial Moutard transformation between solutions
of the BQL linear problem (2.9) providing thus the corresponding transformation between solutions of the discrete
BKP equation (2.13). Our goal will be to find the transition to the Pfaffian expressions of [38] starting from the
BQL reduction of the fundamental transformation. In describing this connection we follow the ideas of [31], where a
similar problem between the Grammian expressions for binary Darboux transformation of the KP hierarchy has been
transformed, in the BKP reduction, into the Pfaffian form [26] (see also [26,46] for other aspects of the relation of
Pfaffians with the BKP hierarchy and the discrete BKP equation).

4.1. The fundamental transformation of the QL

Let us first recall some basic facts concerning the vectorial fundamental transformation of the quadrilateral lattice.
Geometrically, the (scalar) fundamental transformation is the relation between two quadrilateral lattices x and x̂ such
that for each direction i the points x , x̂ , x(i) and x̂(i) are coplanar.

We present below the algebraic description of its vectorial extension (see [33,21,32] for details) in the affine
formalism. Given the solution Yi : ZN

→ V, V being a linear space, of the linear system (2.18), and given the
solution Y∗

i : ZN
→ V∗, V∗ being the dual of V, of the linear system (2.16). These allow us to construct the linear

operator valued potential: �(Y,Y∗) : ZN
→ L(V), defined by

∆i�(Y,Y∗) = Yi ⊗ Y∗

i , i = 1, . . . , N ; (4.1)

similarly, one defines: �(X,Y∗) : ZN
→ L(V,RM ) and �(Y, h) : ZN

→ V by

∆i�(X,Y∗) = Xi ⊗ Y∗

i , (4.2)
∆i�(Y, h) = Yi ⊗ hi . (4.3)

If �(Y,Y∗) is invertible then the (vectorial) fundamental transform of the lattice x is given by:

x̂ = x − �(X,Y∗)�(Y,Y∗)−1�(Y, h). (4.4)

The corresponding transformation of the τ -function τ̃ of the quadrilateral lattice reads:

ˆ̃τ = τ̃ det �(Y,Y∗). (4.5)

When dim V = 1 we obtain the formula relating the quadrilateral lattice x and its fundmental transform
x̂. The vectorial fundamental transformation can be considered as superposition of dim V (scalar) fundamental
transformations; on intermediate stages the rest of the transformation data should be suitably transformed as well.
Such a description contains already the principle of permutability of such transformations, which follows from the
following observation [21].

Lemma 15. Assume the following splitting of the data of the vectorial fundamental transformation:

Yi =

(
Ya

i
Yb

i

)
, Y∗

i =
(
Y∗

ai , Y∗

bi
)
, (4.6)
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associated with the partition V = Va ⊕ Vb, which implies the following splitting of the potentials

�(Y, h) =

(
�(Ya, h)
�(Yb, h)

)
, �(Y,Y∗) =

(
�(Ya,Y∗

a ) �(Ya,Y∗

b )

�(Yb,Y∗
a ) �(Yb,Y∗

b )

)
, (4.7)

�(X,Y∗) = (�(X,Y∗
a ), �(X,Y∗

b )). (4.8)

Then the vectorial fundamental transformation is equivalent to the following superposition of vectorial fundamental
transformations:
(1) Transformation x → x̂{a} with the potentials �(Ya, h), �(Ya,Y∗

a ), �(X,Y∗
a )

x̂{a}
= x − �(X,Y∗

a )�(Y
a,Y∗

a )
−1�(Ya, h). (4.9)

(2) Application on the result the vectorial fundamental transformation with the transformed potentials:

x̂{a,b}
= x̂{a}

− �̂(X,Y∗

b )
{a}

[�̂(Yb,Y∗

b )
{a}

]
−1�̂(Yb, h){a}, (4.10)

where

�̂(Yb, h){a}
= �(Yb, h)− �(Yb,Y∗

a )�(Y
a,Y∗

a )
−1�(Ya, h), (4.11)

�̂(Yb,Y∗

b )
{a}

= �(Yb,Y∗

b )− �(Yb,Y∗
a )�(Y

a,Y∗
a )

−1�(Ya,Y∗

b ), (4.12)

�̂(X,Y∗

b )
{a}

= �(X,Y∗

b )− �(X,Y∗
a )�(Y

a,Y∗
a )

−1�(Ya,Y∗

b ). (4.13)

Corollary 16. The normalized tangent vectors Xi and the Lamé coefficients hi are transformed, at the intermediate
step, according to formulas:

X̂{a}

i = Xi − �(X,Y∗
a )�(Y

a,Y∗
a )

−1Ya
i , (4.14)

ĥ{a}

i = hi − Y∗

ia�(Ya,Y∗
a )

−1�(Ya, h), (4.15)

which also give the corresponding transforms of the second set of transformation data Yb and: Y∗

b

Ŷb{a}

i = Yb
i − �(Yb,Y∗

a )�(Y
a,Y∗

a )
−1Ya

i , (4.16)

Ŷ∗{a}

ib = Y∗

ib − Y∗

ia�(Ya,Y∗
a )

−1�(Ya,Y∗

b ); (4.17)

which agree with the transformation rules: (4.13) for the potentials, i.e.,

�̂(Yb, h){a}
= �(Ŷb{a}, ĥ{a}),

�̂(Yb,Y∗

b )
{a}

= �(Ŷb{a}, Ŷ∗{a}

b ),

�̂(X,Y∗

b )
{a}

= �(X̂{a}, Ŷ∗{a}

b ).

Remark 12. The same result x̂ = x̂{a,b}
= x̂{b,a} is obtained exchanging the order of transformations, exchanging

also the indices a and b in formulas (4.9)–(4.13).

Remark 13. If we denote by x̂{1,2} the quadrilateral lattice obtained by superposition of two (scalar) fundamental
transforms from x to x̂{1} and x̂{2}, then the points x, x̂{1}, x̂{2} and x̂{1,2} are coplanar again, i.e., the fundamental
transformations reproduce the planarity constraint responsible for integrability of the quadrilateral lattice.

4.2. The BQL (Moutard) reduction of the fundamental transformation

In this section we describe restrictions on the data of the fundamental transformation in order to preserve the
reduction from QL to BQL. As usual (see, for example [21,15,32]) the reduction of the fundamental transformation for
the special quadrilateral lattices mimics the geometric properties of the lattice. Because the basic geometric property
of the (scalar) fundamental transformation can be interpreted as construction of a ‘new level’ of the quadrilateral
lattice, then it is natural to define the reduced transformation in a similar spirit. Our definition of the BQL reducion of
the fundamental transformation is therefore based on the following observation.
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Lemma 17. Given B-quadrilateral lattice x : ZN
→ PM and its fundamental transform x̂ constructed under

additional assumption that for any point x of the lattice and any pair i, j of different directions, the four points
x, x(i j), x̂(i) and x̂( j) are coplanar. Then the lattice x̂ : ZN

→ PM is B-quadrilateral lattice as well.

Proof. The result is equivalent to the 4-dimensional consistency of the BQL lattice. Indeed, in Proposition 7 let the
fourth direction be identified with the transformation direction (the first three directions are the lattice directions i , j ,
k). Then the implication x4 ∈ 〈x124, x134, x234〉 is rewritten in the form x̂ ∈ 〈x̂(i j), x̂(ik), x̂( jk)〉. �

Definition 2. The fundamental transform x̂ of a B-quadrilateral lattice x : ZN
→ PM constructed under additional

assumption that for any point x of the lattice and any pair i, j of different directions, the four points x , x(i j), x̂(i) and
x̂( j) are coplanar is called the BQL reduction of the fundamental transformation of x .

On the algebraic level, the Darboux-type transformation of the solutions of the linear problem (2.9) was introduced
and studied by Nimmo and Schief in [38] as discretization of the Moutard transformation. We will derive their results
from the general theory of transformations of the quadrilateral lattice.

Lemma 18. Given a scalar solution Yi of the linear problem (2.18) with the rotation coefficients restricted by
the BQL reduction (2.22) and (2.23), denote by θ = Ω(Y, h) the corresponding potential, where the Lamé coefficients
are given by Eq. (2.21). Then the functions:

Y ∗

i = (−1)
∑
k<i

mk τ

τ(i)
(θ + θ(i)) (4.18)

are solutions of the adjoint linear problem (2.16) in the BQL reduction, and the function θ2 can be taken as the
corresponding potential Ω(Y, Y ∗)

θ2
= Ω(Y, Y ∗). (4.19)

Proof. By direct calculation one verifies that the functions defined in (4.18) satisfy the reduced system (2.16).
Similarly one checks the validity of Eq. (4.19). �

Remark 14. Notice that Eq. (4.19) implies, under assumptions of Lemma 18, the form (4.18) of the solution of the
adjoint linear problem.

Proposition 19. Given BQL lattice x with homogeneous representation x in the gauge of the linear problem (2.9),
then the transform of x constructed using Eq. (4.4) with the data described in Lemma 18 data satisfies the conditions
of the BQL reduction.

Proof. The fundamental transform of x constructed with such a data reads

x̂ = x − �(X, Y ∗)/θ. (4.20)

Eq. (4.2), with �(X, Y ∗) given above, can be rewritten then in the following form:

x̂(i) − x =
θ

θ(i)
(x̂ − x(i)), (4.21)

which, together with the linear problem (2.9), implies the linear relation:

θ

θ(i)
(x̂(i) − x)−

θ

θ( j)
(x̂( j) − x)+

1
f i j (x(i j) − x) = 0, i < j, (4.22)

between the homogeneous coordinates of the points x , x(i j) of the lattice and the points x̂(i) and x̂( j) of its fundamental
transform, which is the algebraic expression of their coplanarity. �

In the approach of [38] the Moutard transform x̂ of x was defined in terms of the system (4.21). Then x̂ satisfies new
Moutard equations (2.9) with new potential:

f̂ i j
= f i j θ(i)θ( j)

θθ(i j)
, i < j, (4.23)
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and new τ -function

τ̂ = θτ. (4.24)

Another important ingredient of [38] was the existence of the potential S(θ |x) = θ x̂ which satisfies the system:

∆i S(θ |x) = θ(i)x − θx(i). (4.25)

We have shown that the algebraic reduction, described in Lemma 18, of the data of the fundamental transformation
can be interpreted as a BQL reduction of the transformation. We close this section by showing that the above algebraic
description holds generally.

Proposition 20. Any BQL-reduction of the fundamental transformation can be algebraically described as in
Proposition 19.

Proof. We will follow the reasoning of [4] used to the same linear problem (2.9) but in different geometric context.
Because the BQL-reduced fundamental transformation can be considered as construction of the new level of the
B-quadrilateral lattice, its algebraic representation should be (in appropriate gauge) in the form of the BQL linear
problem (2.9)

x̂(i) − x = f 0i (x̂ − x(i)), (4.26)

where we can label the transformation direction by the index 0. The compatibility of system (4.26) gives the following
equations (compare with (2.11)):

f 0i
( j) f 0 j

= f 0 j
(i) f 0i , 1 − f 0 j

(i) ( f 0i
+ f i j ) = − f 0i

( j) f i j . (4.27)

First of them implies the existence of a potential θ such that:

f 0i
=

θ

θ(i)
,

thus Eq. (4.21). The second equation rewritten in terms of the potential implies that θ satisfies linear problem (2.9), i.e.
θ = Ω(Y, h), where h given by (2.21) and Yi is a solution of the linear problem (2.18) with the rotation coefficients
restricted by the BQL reduction (2.22) and (2.23). By Eq. (4.18) we define the corresponding solution of the adjoint
linear problem. Finally, direct calculation with the help of the Moutard transformation formulas (4.21) show that the
potential:

�(X, Y ∗) = θ(x − x̂),

(compare with Eq. (4.20)) does satisfy Eq. (4.2), thus Ω(Y, Y ∗) is of the form given in Eq. (4.19). �

4.3. The BQL reduction of the vectorial fundamental transformation

In this section we propose the restrictions on the data of the vectorial fundamental transformation, which are
compatible with the BQL reduction.

Proposition 21. Given solution Yi : ZN
→ V of the linear problem (2.18) corresponding to the BQLlinear problem

(2.9) satisfied by the homogeneous coordinates x of the BQL lattice x : ZN
→ PM . Denote by 2 = �(Y, h) the

corresponding potential, which is also new vectorial solution of the BQL linear problem (2.9).
(1) Then

Y∗

i = (−1)
∑
k<i

mk τ

τ(i)
(2t

+ 2t
(i)) (4.28)

provides a vectorial solution of the adjoint linear problem, and the corresponding potential �(Y,Y∗) allows for the
following constraint:

�(Y,Y∗)+ �(Y,Y∗)t = 22 ⊗ 2t. (4.29)

(2) The fundamental vectorial transform x̂ of x, given by (4.4) with the potentials � restricted as above can be
considered as the superposition of dim V (scalar) discrete BQL reduced fundamental transforms.
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Proof. The point (1) can be checked by direct calculation. To prove the point (2) notice that when dim V = 1 we obtain
the BQL reduction of the fundamental transformation in the setting of Proposition 19. For dim V > 1 the statement
follows from the standard reasoning applied to superposition of two reduced vectorial fundamental transformations
(compare with [21,15]).

Assume the splitting V = Va ⊕ Vb of the vectorial space V, and the induced splitting of the basic data Yi of the
transformation. Then we have also (in shorthand notation, compare Eqs. (4.7) and (4.8))

2 =

(
2a

2b

)
, �(Y,Y∗) =

(
�a

a �a
b

�b
a �b

b

)
, (4.30)

and the constraint (4.29) reads:(
�a

a �a
b

�b
a �b

b

)
+

(
�at

a �bt
a

�at
b �bt

b

)
= 2

(
2a

⊗ 2at 2a
⊗ 2bt

2b
⊗ 2at 2b

⊗ 2bt

)
. (4.31)

By straightforward algebra, using Eq. (4.31), one checks that the transformed potentials (compare Eq. (4.13))

�
b{a}

b = �b
b − �b

a[�a
a]

−1�a
b, (4.32)

2b{a}
= 2b

− �b
a[�a

a]
−12a, (4.33)

satisfy the BQL constraint (4.29) as well, i.e.,

�
b{a}

b + �
b{a} t
b = 2 2b{a}

⊗ 2b{a} t, (4.34)

which concludes the proof. �

Remark 15. Because the BQL-reduced fundamental transformation can be considered as construction of new levels
of the B-quadrilateral lattice, then if we denote by x̂ {1,2} the B-quadrilateral lattice obtained by superposition of two
(scalar) such transforms from x to x̂ {1} and x̂ {2}, then for each direction i of the lattice the points x , x̂ {1}

(i) , x̂ {2}

(i) and x̂ {1,2}

are coplanar as well as the points x(i), x̂ {1}, x̂ {2} and x̂ {1,2}

(i) . Similarly, if we consider superpositions of three (scalar)
transforms of the B-quadrilateral lattice x then the points x , x̂ {1,2}, x̂ {1,3} and x̂ {2,3} are coplanar as well as the points
x̂ {1}, x̂ {2}, x̂ {3} and x̂ {1,2,3}.

4.4. The Pfaffian form of the transformation

Finally, we are going to show that the Pfaffian formulas of the vectorial discrete Moutard transformation obtained
in [38] can be derived from the corresponding formulas of the fundamental transformation subjected to the BQL
reduction.

Denote by S(2|2) the antisymmetrical part of: �(Y,Y∗) then Eqs. (4.1), (4.28) and (4.29) imply

∆i S(2|2) = 2(i) ⊗ 2t
− 2 ⊗ 2t

(i). (4.35)

Lemma 22. For �(Y,Y∗) and S(2|2) as above we have:

det �(Y,Y∗) = det S(2|2)+

∣∣∣∣0 −2t

2 S(2|2)

∣∣∣∣ . (4.36)

Proof. Notice that the j th column Ω j of �(Y,Y∗) is of the form:

Ω j = θ j2 + S j , (4.37)

where θ j is the j th component of 2, and S j is the j th column of S(2|2). Then the basic properties of determinants
imply that:

det �(Y,Y∗) = det S(2|2)+

dimV∑
j=1

θ j S( j), (4.38)
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where by S( j) we denote the matrix S(2|2) with j th column replaced by 2. The second summand in (4.38) is the
Laplace expansion of that in (4.36). �

The standard properties of determinants of antisymmetric matrices (see Appendix B) imply the following result
derived in [38] directly on the level of vectorial Moutard transformation.

Corollary 23. The transformation formula (4.5) of the QL τ -function and the relation (2.25) between both τ -functions
imply the following transformation formula for the BQL τ -function:

τ̂ =


τPf S(2|2), dim V even

τPf
(

0 −2t,

2 S(2|2)

)
, dim V odd.

(4.39)

Remark 16. Notice [38] that:(
0 −2t,

2 S(2|2)

)
= S(2̃|2̃), where 2̃ =

(
1
2

)
, (4.40)

which allows us to define:

P(2) =

{
Pf S(2|2), dim V even,
Pf S(2̃|2̃), dim V odd,

(4.41)

and gives

τ̂ = τP(2). (4.42)

Finally, we will connect the formula of the vectorial fundamental transformation (4.4) in the BQL reduction with
the Pffafian form of the vectorial Moutard transformation [38].

Corollary 24. The homogeneous coordinates (in the gauge of the linear problem (2.9)) of the BQL lattice x̂ obtained
from the BQL lattice x via vectorial transform with the solution 2 of the linear problem (2.9) are given by:

x̂ i
=
P(2, x i )

P(2)
, (4.43)

where

P(2, x i ) = P
((

2

x i

))
. (4.44)

Proof. We will work using assumptions and notation of Proposition 21. Let us define:

S(x|2) = �(X,Y∗)− x ⊗ 2t, (4.45)

then, due to Eqs. (2.17), (4.2) and (4.28) we have

∆i S(x|2) = x(i) ⊗ 2t
− x ⊗ 2t

(i). (4.46)

By the Cramer rule and Eq. (4.37), formula (4.4) in the considered reduction case can be brought to the form:

x̂ = x − (x ⊗ 2t
+ S(x|2))

1
det �(Y,Y∗)

 det S(1)
...

det S(dim V)

 , (4.47)

moreover we have:

2t

 det S(1)
...

det S(dim V)

 =

∣∣∣∣0 −2t

2 S(2|2)

∣∣∣∣ . (4.48)
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Our further analysis splits in the cases of dim V being even or odd. In the first case the right-hand side of Eq. (4.48)
vanishes giving:

x̂ = x −
S(x|2)

Pf S(2|2)

 Pf S[1]

...

Pf S[dim V]

 , (4.49)

where we used Eq. (4.36) and the Pfaffian analogue (B.11) of the Cramer rule for solutions of the equation
S(2|2)y = 2. Then the expansion rule for Pfaffians (B.8) implies that the i th coordinates of the B-quadrilateral
lattice x and its transform x̂ can be put in the form

x̂ i
=

1
Pf S(2|2)

Pf

 0 x i S(x i
|2)

−x i 0 −2t

−S(x i
|2)t 2 S(2|2)

 =
P(2, x i )

P(2)
. (4.50)

For dim V odd, by Eqs. (4.36) and (4.48), Eq. (4.47) reduces to

x̂ = −

∣∣∣∣0 −2t

2 S(2|2)

∣∣∣∣−1

S(x|2)

 det S(1)
...

det S(dim V)

 . (4.51)

Expanding det S( j) with respect to its j th column, and using Pfaffian expressions (B.13) for the minors of S(2|2)

we obtain:

x̂ i
=

Pf
(

0 S(x i
|2)

−S(x i
|2)t S(2|2)

)
Pf
(

0 −2t

2 S(2|2)

) =
P(2, x i )

P(2)
, (4.52)

which concludes the proof. �

5. Conclusion and remarks

We presented a new geometric interpretation of the discrete BKP equation within the theory of quadrilateral lattices.
This new integrable lattice should be considered, together with the symmetrical lattice [18] and the quadrilateral
lattices subject to quadratic constraints [15], as one of basic reductions of the quadrilateral lattice. In the forthcoming
paper [16] we show, for example, that the discrete isothermic surfaces [3] are lattices subjected simultaneously to the
BQL and quadratic (in this case the quadric is the Möbius sphere) reductions.

As in the case of the Hirota (the discrete KP) equation, also the Miwa (the discrete BKP) equation can be considered
in the finite fields (or the finite geometry) setting. In paricular, the main algebro-geometric way of reasoning (see [20,
2] for the former discrete KP case) leading to the Prym varieties should be also transferable for fields of characteristic
difference from two (see [37] for general theory of Prym varieties).

The explicit Prym-theta functional formulas (it is enough to consider the case N = 2) for the wave function and
potentials of the discrete Moutard equation can be also used to provide characterization of the Prym varieties among
all principally polarized abelian varieties (the Prym–Schottky problem) in the spirit of [30], see also [44,45].
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Appendix A. An alternative proof of the existence of the BQL gauge

The planarity condition of elementary quadrilaterals of QL can be expressed in terms of generic homogoneous
representation as the following system of discrete Laplace equations [17]:

x(i j) = ai j x(i) − a j i x( j) + ci j x, 1 ≤ i < j ≤ N (A.1)

whose compatibility are equations

ai j
(k)c

ik
− a j i

(k)c
jk

= aik
( j)c

i j
− aki

( j)c
jk

= a jk
(i)c

i j
− ak j

(i)c
ik, (A.2)

ai j
(k)a

ik
= aik

( j)a
i j

= c jk
(i) + a jk

(i)a
i j

− ak j
(i)a

ik, (A.3)

a j i
(k)a

jk
= a jk

(i)a
j i

= −cik
( j) + aik

( j)a
j i

+ aki
( j)a

jk, (A.4)

aki
( j)a

k j
= ak j

(i)a
ki

= ci j
(k) + a j i

(k)a
k j

− ai j
(k)a

ki , (A.5)

where 1 ≤ i < j < k ≤ N . Because:

x ∧ x(i j) ∧ x(ik) ∧ x( jk) = x ∧ x(i) ∧ x( j) ∧ x(k)(ai j a jkaki
− a j i ak j aik), (A.6)

then the BQL reduction condition is equivalent to:

ai j a jkaki
− a j i ak j aik

= 0. (A.7)

We will show that Eq. (A.7) implies existence of the gauge function ρ : ZN
→ R such that:

ai jρ(i) = a j iρ( j), aikρ(i) = akiρ(k), a jkρ( j) = ak jρ(k), (A.8)

ρ(i j) = ci jρ, ρ(ik) = cikρ, ρ( jk) = c jkρ. (A.9)

Then, after rescaling x → x/ρ, the new homogeneous coordinates satisfy the system (2.9).
Let us consider Eqs. (A.8) and (A.9) as a difference system, which allows to calculate from ρ and (say) ρ(i) values

of the gauge function in remaining vertices of the hexahedron. Notice first that the condition (A.7) and the system
(A.2)–(A.5) imply (it can be verified directly, but actually it follows from Corollary 5) that:

ai j
(k)c

ik
= a j i

(k)c
jk, aik

( j)c
i j

= aki
( j)c

jk, a jk
(i)c

i j
= ak j

(i)c
ik . (A.10)

The condition (A.7) assures self-consistency of Eq. (A.8). Then Eq. (A.10) imply consistency of Eq. (A.9) with the
following consequence of: Eq. (A.8)

ai j
(k)ρ(ik) = a j i

(k)ρ( jk), aik
( j)ρ(i j) = aki

( j)ρ( jk), a jk
(i)ρ(i j) = ak j

(i)ρ(ik).

Finally, the self-consistency of Eq. (A.9) in finding ρ(i jk) follows from Eq. (A.8) and the system (A.3)–(A.5).

Remark 17. Notice that the system (A.2)–(A.5) of nonlinear equations can be considered as a system of eight linear
equations allowing for transition:

(ai j , a j i , aik, aki , a jk, ak j , ci j , cik, c jk) → (ai j
(k), a j i

(k), aik
( j), aki

( j), a jk
(i), ak j

(i), ci j
(k), cik

( j), c jk
(i));

the difference in the number of unknowns and equations reflects the homogeneous nature of the linear system (A.1).

Appendix B. Pfaffians

We recall basic properties of Pfaffians [36,41], which we use in Section 4.4. Let A = (ai j )1≤i, j≤2r be a skew
symmetrical matrix (i.e., a j i = −ai j ) of the even order 2r . Consider the form:

ω =

∑
i< j

ai j ei ∧ e j , (B.1)
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then the Pfaffian Pf(A) of A is defined by:

ω∧r
= (r !) Pf(A) e1 ∧ · · · ∧ e2r . (B.2)

For each permutation π of {1, . . . , 2r}, put Aπ = (aπ(i)π( j)), then

Pf(Aπ ) = sgn π Pf(A). (B.3)

Notice the analogy with the determinant det B of an arbitrary square matrix B = (bi j )1≤i, j≤n expressed in terms of
the forms:

ωi =

∑
j

bi j e j (B.4)

as follows:

ω1 ∧ · · · ∧ ωn = det(B) e1 ∧ · · · ∧ en . (B.5)

It turns out that the determinant of any skew symmetrical matrix of an even order equals the square of its Pfaffian:

det(A) = (Pf(A))2. (B.6)

For any two subsets I, J ⊂ {1, . . . , n} denote by B(I, J ) the sub-matrix of B obtained by removing all the i th ∈ I
rows and all the j th ∈ J columns of B. Then in analogy to the Laplace expansion of determinants:

δi j det(B) =

n∑
k=1

bk j (−1)k+i det(B({k}, {i})), (B.7)

we have the following expansion formula for Pfaffians:

δi j Pf(A) =

2r∑
k=1

ak j (−1)k+i−1Pf(A({k, i}, {k, i})). (B.8)

Both formulas imply:

det(A({i}, { j})) = −Pf(A) Pf(A({i, j}, {i, j})), (B.9)

which leads to the following Pfaffian–Cramer rule for solutions of the linear system:

Ay = b (B.10)

with non-degenerate skew symmetrix matrix od the even order:

y j
=

Pf(A[ j])
Pf(A)

, (B.11)

where by A[ j] is denoted the matrix A whose j th column is replaced by:

b′
= (b1, . . . , b j−1, 0,−b j+1, . . . ,−b2r )t, (B.12)

and whose j th row is replaced by −b′t.
When the order of the skew symmetrical matrix A is odd we have det(A) = 0, but the following formula holds:

det(A({i}, { j})) = Pf(A({i}, {i})) Pf(A({ j}, { j})). (B.13)
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